
The lecture 7



Classes VS Structs

 The majority of types in a framework should be classes, but if instances of the type are small 

and commonly short-lived or are commonly embedded in other objects define a struct.



Struct
class Program

{
static void Main(string[] args)
{

Employee newEmployee = new 
Employee();

newEmployee.employeeName = 
"James";

newEmployee.employeeJob = 
"Programmer";

newEmployee.Salary = 5000;
Console.WriteLine($"Employee 

name is {newEmployee.employeeName} 
and his job is {newEmployee.employeeJob} 
and starting salary is 
{newEmployee.Salary}");

newEmployee.SayHi();
}

}

struct Employee
{

public string employeeName;
public string employeeJob;
private decimal salary;

public decimal Salary
{

get { return salary; }
set { salary = value; }

}

public void SayHi()
{

Console.WriteLine("Hi from the 
method in struct");

}
}



Enumerations

class Program

{

static void Main(string[] args)

{

string weekDayName = 

WeekDay.Monday.ToString();

WeekDay day = 

WeekDay.Sunday;

Console.WriteLine((int)day);

}

}

enum WeekDay

{

Monday,

Tuesday,

Wednesday,

Thursday,

Friday = 40,

Saturday = 50,

Sunday = 60

}



Interfaces

 An interface contains definitions for a group of related functionalities that a class 

or a struct can implement.

 Think of it as contract that all the classes inheriting the interface should follow. 

The interface defines the 'what' part of the contract and the deriving classes 

define the 'how' part of the contract.



Interfaces



Interfaces

class Program

{
static void 

Main(string[] args)
{

Dogs dog = 
new Dogs();

dog.Attack();

dog.SayHi();
dog.Run();

}
}

public interface 

IAnimals
{

void Run();
}

public interface 
IDogCommands : 
IAnimals

{
void Stay();
void Sit();
void Attack();

string 
DogName

{
set;
get;

}
}

interface Trainer
{

}

class Animals
{

string AnimalName;

public void SayHi()
{

Console.WriteLine("Hi 
from the animals class");

}
}

class Dogs : Animals, IDogCommands, 

Trainer

{

private string DogBreed;

public void Stay()

{

Console.WriteLine("Dog is staying");

}

public void Sit()

{

Console.WriteLine("Dog is sitting");

}

public void Attack()

{

Console.WriteLine("Dog is attacking");

}

public void Run()

{

Console.WriteLine("Animal is running");

}

public string DogName { get; set; }

}


