


Classes VS Structs

» The majority of types in a framework should be classes, but if instances of the type are small
and commonly short-lived or are commonly embedded in other objects define a struct.

Class Struct

v Declared with class keyword v Declared with struet keyword

v Supports inheritance v Doesn’t Support inheritance

v User-defined constructors can be implemented l v User-defined constructors can’t be implemented
v Data members can be initialized in the class v Data members can'’t be initialized in the struet

definition definition

v Reference type (Heap) v Value type (Stack)




Struct

class Program

{

static
{
Employee newEmployee = new
Employee();
newEmployee.employeeName =
"James";
newEmployee.employeeJob =
"Programmer”;
newEmployee.Salary = 5000;
Console.WritelLine ($"Employee
name is {newEmployee.employeeName}
and his job is {newEmployee.employeeJob}
and starting salary is
{newEmployee.Salary}");
newEmployee.SayHi();
}
}

struct Employee
{
public string employeeName;
public string employeeJob;
private decimal salary;

public decimal Salary
{
get { return salary; }
set { salary = value; }

}

public void SayHi()
{
Console.WriteLine("Hi from the
method in struct’);

}
}




class Program

{
static void_ :

{ !




» An interface contai ‘

or a struct can imp

» Think of it as contr
The interface def




Interfaces

Interface Abstract Class

Similarities

» Can't be instantiated directly
» Must implement all its members

» Can contain events, methods, and properties.

Differences

Can’t have method implementations Can have method implementations
Allow multiple inheritance Doesn’t allow multiple inheritance
Can’t have access modifiers, everything is public Can contain access modifiers

Can’t contain variables Can contain variables




Interfaces

class Program public interface inferface Trainer class Dogs : Animals, IDogCommands,
{ |Animails { Trainer
static { e |
void Run(); } private string DogBreed;
{ } , :
Dogs dog = class Animals ?Ubhc feic Stovy
new Dogs(); public inferface e ' Console.WriteLine("Dog is staying");
IDogCommands : string AnimalName; )
dog.Attack(); |Animals
{ public void SayHi() public void Sit()
. : . {
dog.Soggg)éun”. zg:g g;ﬁ)y() { Console.WriteLine("Dog is sitting");
void Aftack(); | Console.Wiifeline("Hi ek
} from the animals class"); {
} string } Console.Writeline('Dog is aftacking”);
DogName } }
{ public void Run()
seft; { . : i
) Console.WriteLine("Animal is running");
geft; }
}
} public string DogName { get; set; }
}




